How to best use these slides...

• View the PPT as a slide show

- Then click through every step
 - Mouse clicks will advance the slide show
 - Left/right arrow keys move forward/backward
 - Mouse wheel scrolling moves forward/backward
- When a question is posed, stop and think it through, try to answer it yourself before clicking
- If you have questions, use PS discussion boards, email me, and/or visit us in a Teams class session!

LESSON 7.3a

Multiplying Rational Expressions

Today you will:

- Simplify rational expressions
- Multiply rational expressions
- Practice using English to describe math processes and equations

Core Vocabulary:

- Rational expression, p. 376
- Simplified form of a rational expression, p. 376

Prior:

- Fractions and fraction arithmetic
- Polynomials
- Domain
- Equivalent expressions
- Reciprocal

Today we are going to multiply Rational Expressions

Tomorrow we will divide them...

- Heads up...we will turn our division problems into multiplication (reciprocal)
- So getting our multiplication skills down pat is *important!*

But first we need to:

- 1. Figure out what a *rational expression* is:
 - One polynomial divided by another
 - In other words, a fraction with a polynomial on top and another on the bottom
 - $\frac{p(x)}{q(x)}$ where p(x) and q(x) are both non-zero polynomials
 - Example: $\frac{3x^2+6}{9x-12}$
 - Note there is no = sign. Why? Because this is an **EXPRESSION** not an equation. \bigcirc
- 2. Since a rational expression is basically a fraction, we also review our fraction arithmetic rules!

Fraction Arithmetic

Okay settle down, we can do this...

We are going to be multiplying so let's focus on how to multiply fractions

- 1. Simplify simplify ... did I mention simplify? No? Okay ... simplify
 - Divide out (people often say cancel) common factors
 - Note I said simplify *FACTORS* not terms
 - Factors means **product** which means things **multiplied** together

In the numerator x and 3 are terms **NOT** products

Fraction Arithmetic - Simplifying

- Note from the prior examples you may need to factor in order to simply.
- Let me say that again ... you may need to *factor a polynomial*. \bigcirc
- This means you might want to go back and review our factoring lessons!
- Here are links to some of the key lessons and PowerPoints from Chapter 4:
 - <u>Short chapter review (from our midterm preps)</u>
 - L4.2c Polynomial Identities & Patterns
 - L4.4a Special Polynomial Factoring Patterns
 - L4.4b Factoring Polynomials by Grouping
 - L4.4c Factor Theorem

SOLUTION

COMMON ERROR

Do not divide out variable terms that are not factors. $\frac{x-6}{x-2} \neq \frac{-6}{-2}$

 $=\frac{(x+2)(x-6)}{(x+2)(x-2)}$

 $=\frac{x-6}{x-2}$, $x \neq -2$

Factor numerator and denominator.

Divide out common factor.

Simplified form

The original expression is undefined when x = -2. To make the original and simplified expressions equivalent, restrict the domain of the simplified expression by excluding x = -2. Both expressions are undefined when x = 2, so it is not necessary to list it.

Fraction Arithmetic - Multiplying

Note: when I use the term "cancel" I really mean "divide common factors"

ANOTHER WAY

In Example 2, you can first simplify each rational expression, then multiply, and finally simplify the result.

Find the product
$$\frac{3x - 3x^2}{x^2 + 4x - 5} \cdot \frac{x^2 + x - 20}{3x}$$

SOLUTION

$$\frac{3x - 3x^{2}}{x^{2} + 4x - 5} \cdot \frac{x^{2} + x - 20}{3x} = \frac{3x(1 - x)}{(x - 1)(x + 5)} \cdot \frac{(x + 5)(x - 4)}{3x}$$

$$= \frac{3x(-1)(x - 1)}{(x - 1)(x + 5)} \cdot \frac{(x + 5)(x - 4)}{3x}$$

$$= \frac{3x(-1)(x + 5)(x - 4)}{(x + 5)(3x)}$$

$$= \frac{3x(-1)(x - 1)(x + 5)(x - 4)}{(x - 1)(x + 5)(3x)}$$

$$= -x + 4, x \neq -5, x \neq 0, x \neq 1$$

Factor so can divide out common factors in each.

Rewrite 1 - x as (-1)(x - 1) and cancel

Multiply numerators and denominators.

Divide out common factors.

Simplified form

Check the simplified expression. Enter the original expression as y_1 and the simplified expression as y_2 in a graphing calculator. Then use the *table* feature to compare the values of the two expressions. The values of y_1 and y_2 are the same, except when x = -5, x = 0, and x = 1. So, when these values are excluded from the domain of the simplified expression, it is equivalent to the original expression.

Check

Х	Y1	Y2
-5	ERROR	9
-4	8	8
-3	7	7
-2	6	6
-1	5	5
0	ERROR	4
1	ERROR	3
X = -4		

$$=\frac{x+2}{x-3}$$

Simplified form

Review/Recap

- Rational Expression:
 - One polynomial divided by another
 - In other words, a fraction with a polynomial on top and another on the bottom
 - $\frac{p(x)}{q(x)}$ where p(x) and q(x) are both non-zero polynomials
- Fraction Arithmetic Multiplying
 - 1. Simplify each fraction
 - 2. Multiply across
 - 3. Simplify the result

- Alternatively you can:
- 1. Multiply across first
- 2. Then simply the result
- But sometimes it helps to clean up before multiplying across...

- Simplifying
 - Cancelling means "dividing out common factors"
 - Factor before cancelling ... always
 - This mean you **CANNOT** cancel in situations like this: $\frac{x+3}{x}$ because in the numerator x is a term not a factor

Homework

Pg 380, #3-24